Elastic Averaged Coupling

Akshay Harlalka

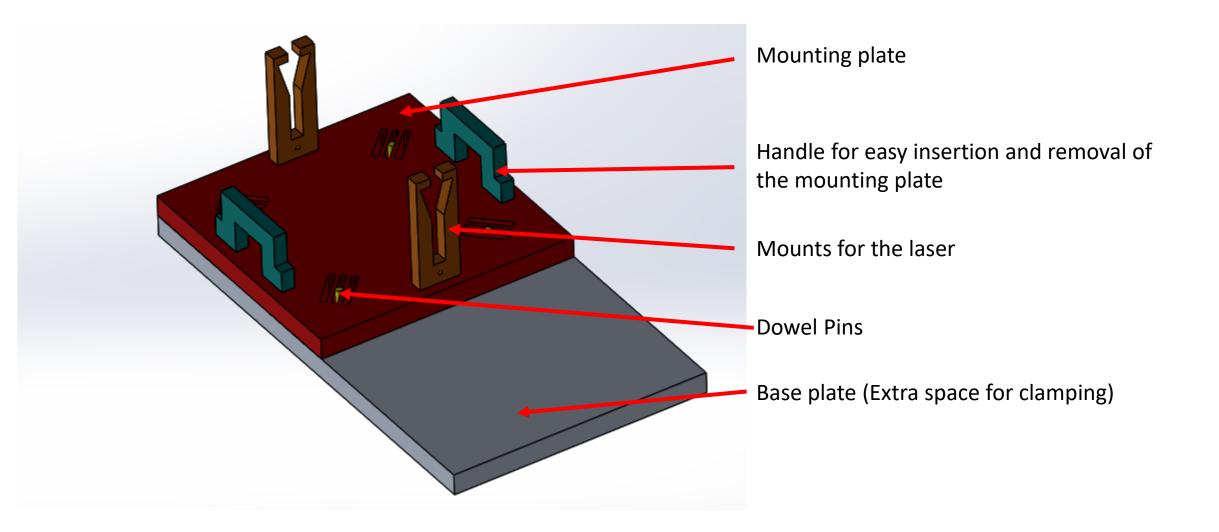
25th February, 2018

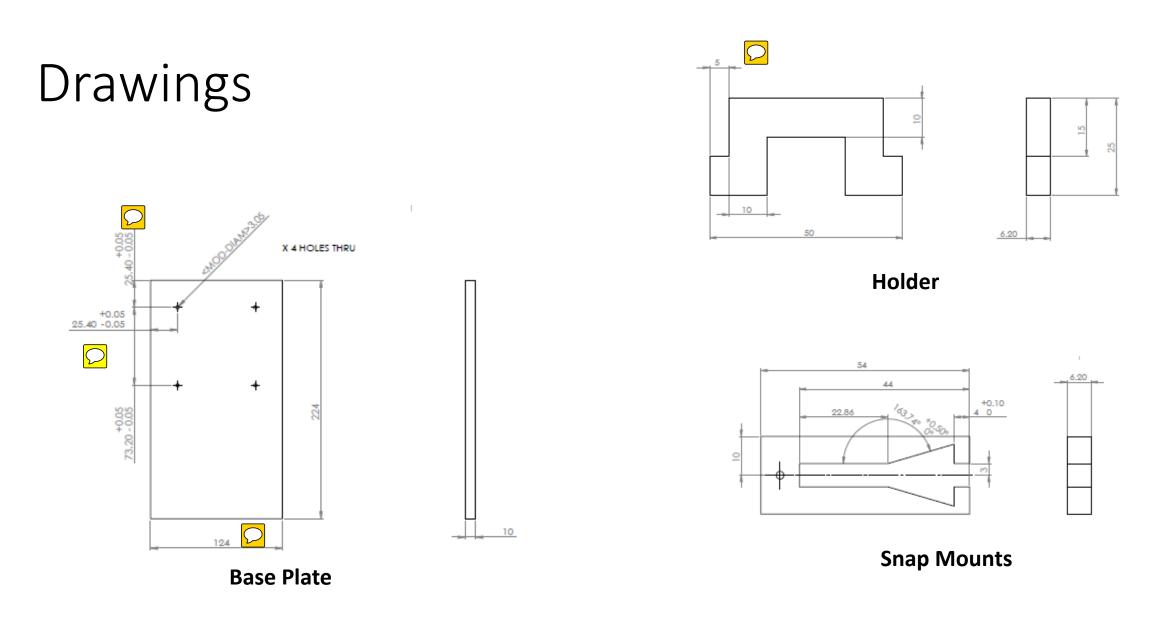
FRDPARRC

Sr. No.	Functional Requirements	Design Parameters	Analysis	References	Risks	Counter Measures
1	Ability to bear reasonable moment loads without failure	Yield Strength of the mounting plate Moment of Inertia of the beam elements Thickness of the beams	Bending stress calculations for the beam elements	Mechanics of Materials	The elastic beams may fail under excessive moment loads	Limit the amount of allowable moments or design a stop which does not allow the moments to exceed a limit
2		Manufacturing errors Number of elastic contacts needed to average out the errors	Performance Ratio (PR) = Manufacturing error/desired accuracy Number of elastic contacts = sqrt(PR)	001	Too few elastic contacts for desired accuracy	Do the calculations for accuracy
3	Stiffness	V, W, Slot width, beam element properties, material properties, angle of orientation	Young's Modulus of the materials Slot width, Dowel Pin diameter, thickness, width and length of the beam elements	Paper, "Principle of elastic averaging for Rapid Precision Design"	Too high stiffness which I cannot measure	Deterministic Design of the beam elements to get the stiffness I want
4		What do I have? Time/Budget Constraints Accessibility of Machines	Resource Assessment Bank Balance Machine Shop Schedules	MW Website, Hobby Shop site	I may not finish the EAC by the deadlineBad	Work fast and use readily available materials
		Pull out force	Force on each beam		The EAC is very difficult to insert and remove.	Design the bear elements such that the

Concept Generation

Elastic Averaged 212+ 506 based design Couplin hego Cons 2:00 too convertional Concepts (1)Pin in slot method 2 Lots of Cons on 205 Desig 1) Can be loser cut/water easily (2) Analysis) Snop foto mechanom 4 > How two on Pres Imake Analysis dore in 2) () Simple to glex and des: gr the paper 3 will it not (reak) = Counter bore feature as discussed in class P Elastic Fingers E Pros Cons 1 Interesting Proc Cool Desig Space O too Itight Stiffnere Gasy + 1 Manu 1 @ Easy will I be all to measure netions Analyze such nigh stiffus Cartile er @ Mount ban Plate will tobe steon


Analysis – check for local yielding of elastic elements


Elastic Averaging Spreadsheet - Check for yielding of the eleastic beam elements					Acrylic						
					Yield Strength of the Material	70	Мра				
Pin diameter	3.2	mm			Tensile Modulus	3102	Мра				
Slot diameter	3	mm			Flexural Modulus	3100	Мра				
Displacement of beam element due to											
Dowel Pin offset	0.1	mm									
Total deflection to be borne by a flexure	0.2	mm									
Length of the flexure	20	mm									
Thickness of the sheet	6.2	mm	Νι	Number of contact points neede Manufacturing error = 100 um Desired Accuracy = 10 um							
Width of the flexure	1.65	mm									
Moment of Inertia	2.3	mm4									
Stiffness of each flexure	172.8	N/mm		Number of contact points = $\sqrt{\frac{100}{10}}$ = 3.16 or 4 contact points							
Force on each beam	34.6	N	N								
Bending Stress	30.7	N/mm2		\sim V 10							
Bending Stress Ratio	0.44										

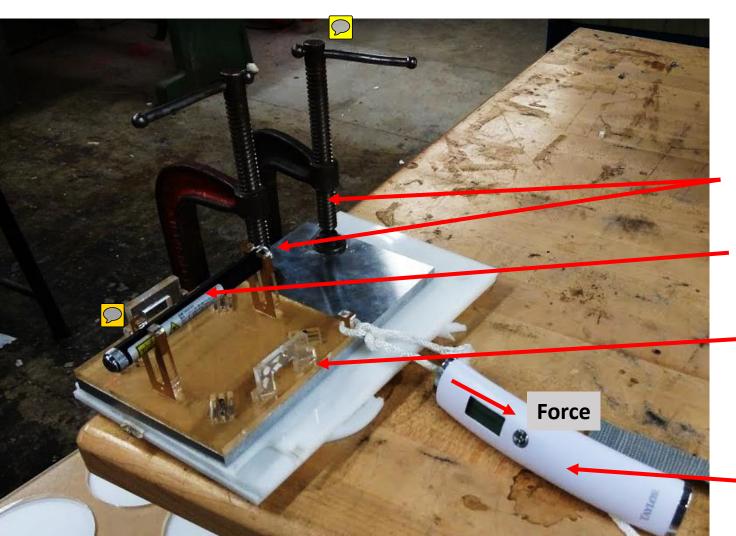
Analysis – MATLAB code for predicting the System Stiffness

% 2.77 Precision Machine Design 2018		
<pre>% Akshay Harlalka - 23rd Feb, 2018</pre>		
%Reference for Calculations:		
%% EAC Calculations		Key Highlights
<pre>% Defining the number of elastic contacts needed % deltaa=input('Enter the desired accuracy of the system in um') % deltam=input('Enter the expected manufacturing error in the parts in % perratio=deltam/deltaa;</pre>		nores the effect of odd stiffness. Assumes body has
<pre>% n=ceil(sqrt(perratio))% thetai=[pi/4 (pi/4+pi/2) (pi/4+pi) ((pi/4)+(3*pi/2))] %Geometry</pre>		es the calculation strategy outlined in the paper title rinciple of elastic averaging for rapid precision desig
V=2.3*10^-3 W=0.675*10^-3		
<pre>r=0.05176 % coupling radius %Orientation Matrix Gl=[cos(thetai(1)) cos(thetai(1)+pi/2) 0 ; sin(thetai(1)) sin(thetai(1))</pre>)+pi/2	Final System Stiffness Predicted = 3730 Nm
G2=[cos(thetai(2)) cos(thetai(2)+pi/2) 0 ; sin(thetai(2)) sin(thetai(2)+pi/2)	/2) 0 ; 0 0 1]
G3=[cos(thetai(3)) cos(thetai(3)+pi/2) 0 ; sin(thetai(3)) sin(thetai(3)+pi/2)	/2) 0 ; 0 0 1]
G4=[cos(thetai(4)) cos(thetai(4)+pi/2) 0 ; sin(thetai(4)) sin(thetai(4)+pi/2)	/2) 0 : 0 0 11
%Jacobian Jil=[1 0 0 ; 0 1 r ; 0 0 1]		Code is uploaded in the Dropbox folder too!
Ji2=[1 0 0 ; 0 1 r ; 0 0 1]		

Design - CAD

Individual drawing files will full details are available in the folder. This is folder representational purposes only.

Fabrication



Materials and Manufacturing :

- Mounting Plate, Laser Mounts, Holder All fabricated by laser cutting Acrylic 6.2 mm thick sheet
- Base Plate Aluminium 10 mm thick plate Took original stock size = 124 * 224 * 10 mm – Drilled 4 holes using 0.12 inch drill, followed by 1/24 " inch reamer (through) and 1/26 inch reamer (upto 1mm depth) to allow the pins to stand straight while pressfitting dowel pins to plate
- **Dowel Pins** Stainless Steel Available off the shelf

Test Setup

Objective: To find the moment stiffness of the EAC

Used two C clamps to fix the base plate to a stiff table (Could not find a fixed Vise which could hold 124 mm wide Al plate)

Laser was mounted firmly on the mounts

The mounts and the handle were attached to a laser-cut acrylic plate using acrylic solvent

Digital scale for load measurement

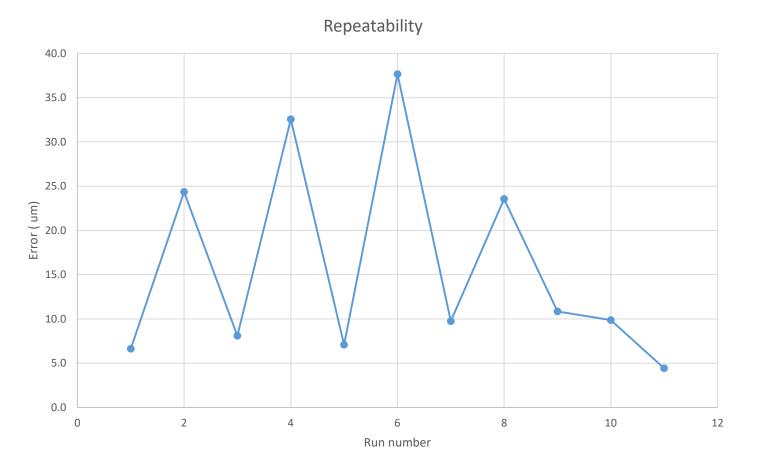
Testing Results - Stiffness

-										
	Sr. No	Weight (in Kg)	Deflection on paper (m)	Distance (m)	Theta (radians)	Force (N)	Arm length (m)	Moment (Nm)	Stiffness (Nm)	
	51. 140	(11116)	Dencetion on paper (m)	(111)	าสนาสาวร		(111)			_
	1	2.54	0.00479	14	0.000342	24.892	0.062	1.543304	4510.701	
	2	3.5	0.01072	14	0.000766	34.3	0.062	2.1266	2777.276	
	3	4.17	0.0101	14	0.000721	40.866	0.062	2.533692	3512.048	Need to che
	4	4.8	0.01486	14	0.001061	47.04	0.062	2.91648	2747.693	this reading
										again
								Average	3386.93	

Distance of laser pointer from paper = 14 meters

Predicted Stiffness was 3730 Nm

 \square


eck

Probable reasons for difference in the theoretical and experimental Stiffness Values:

Theoretical Stiffness does not take the body stiffness into consideration. Therefore, actual stiffness will be slightly lower than predicted. 1.

Movement of the laser could have messed with the values of stiffness I am getting. Plan 💬 to make a kinematic mount for this design and 2. redo the testing

Testing Results - Repeatability

As per recent literatures, the theoretical repeatability for an elastically averaged design can be loosely approximated as $1/vn = \frac{1}{2} = 0.5$ um. This confirms my hypothesis on the movement of the laser

- Since the pull out and insertion force of the mounting plate is high, every time, I pull out the plate, it seems that the laser moves a bit within the mount. This causes drastic variation in the
- repeatability results. At this point, I realized that a kinematically mounted laser would be been a better design choice!!
 - 2. The reason why I had chosen the snap mounts for laser holding was so that I could have an option of clamping the coupling at 90 deg with a Vise because I wasn't able to clamp the coupling horizontally (exceeded the range)