Week 4

2.77

Akshay Harlalka

Kinematic Coupling

FRDPPARC for Kinematic Coupling

	Functional					
Sr.No	Requirements	Design Parameters	Analysis	References	Risks	Counter Measures
	Ability to bear					
	reasonable					
1	Loads/Moments	Axial Load Capacity	Hertz Contact Stress calculations			
		a. Groove type - (V groove, cylindrical, or other			Material yields and KC deforms	Add a reasonable safety factor to
		parametric curve)	Material yields?	KC Design Document	permanently under load	calculations
			If using adhesive/epoxy, analyse if sufficient			
		b. Groove Material - (Steel, Wood, Brass,	bonding strength is present to resist loads	Book - Precision Machine		
		Aluminium, Sheet Metal, Plastic)	and moments?	Design by Slocum		
				Chapter 9 of Fundamentals		
		c. Ball type - (Spherical, Cone, Gothic)		book		
		d. Ball Material - (Steel, Plastic, Wood, Brass)				
				Peak Presiden Machine	Materials corrects and constability	Colort con fratting materials, for hall and
	Benestshility	Pall/Creave Material	Polative bardness	Dook - Precision Machine	is lost	select non-iretting materials for ball and
	кереалартну	ball/Gloove Material	Relative hardness	Design by Slocum	15 1051	grooves
			Young's Modulus of the materials			
			Flexural stiffness of the groove if using non-			
			monolithic features			
з	Stiffness	Stiffness of Materials for ball/groove		KC Design Spreadsheet	Accuracy will not be good	High stiffness materials
			Contact Angle should be at 45 deg for			
		Contact angle	balanced stiffness			
			Use worst spee peolysis of the how the errors			
			in manufacturing can cause tilt/parasitis	Precision machine Design		
	Accuracy	Effect of Manufacturing tolerances	errors	Rook		
-	Accuracy	Effect of Manufacturing toterances	Find deflections and analyze/predict the	BOOK		
		Deflections	accuracy	KC Design Spreadsheet		
			a crait a ch	ne sesign opredesireet		
	Ease of			MW Website, Hobby Shop	I may not finish the KC by the	Work fast and use readily available
5	Manufacture	What do I have?	Resource Assesment	site	deadlineBad	materials
		Time Constraints	Bank Balance			
		Budget Constraints	Time available -			
		Accessibility to machine tools	Machine Shop Schedules			

Concept Generation - Grooves

Concepts of KC Design Concept 3 6 Gluders packed into slots Groove Design Selected 1201 Respe Concept 1 Do you have time? Not enough load capacity. metal) Aralyze Cycli-der Ball 3 Grooves Morolitweally is designed Concept 4 Requires V groove - 90° oncept 2 Could be packed Use Is Estructed into sloops M Carden Brass stock 105 D adding the grooves to pine plate How to If roment land support place los grooves) Capacit

Concept Generation - Balls	Selected
Dearle Designed Decoucy Balls splexical Available at Blick Under Conserved Concept C Scat Machined Philled or Balls Bearing Balls Structures the Available at Blick Concept C Scat Machined Philled Scat Machined Structure to the Structure to the	Concept B Growned shape Ma Availability? Can we use machined bolt ender? Concept E Grothic Arch Stanture Where to get it? Grothic Control Stanture Where to get it?

The critical factor which tilted the balance in the favour of these concepts was ease of manufacturing and the availability of components required for the fabrication.

Analysis – Estimating Deflection under the balls and Axial Stiffness

Kinematic Coupling Design Spreadsheet	- Akshay Harlalka 17/02/2018		For this specific case, major and minor dia for both groove and ba		
Predicting Deflection and Contact Stress	using Hertz Contact Stress Theory				
Parameter	Value	Units	Data	Brass	Units
Radius of the ball (rb)	5	mm	Young's Modulus	9.7E+04	Mpa
Radius of groove (rg)	1.E+08	mm	Poissons Ratio	0.31	
			Ultimate Tensile Strength	400	Mpa
Equivalent Radius (Re)	2.5	mm	Force Applied on center of coupling	12.3	N
Equivalent Young's Modulus (Ee)	5.4E+04	Мра	Contact Force at each interface	1.45	N
Costheta	0.00				
Theta	1.57	Radians		Contraction of the local division of the loc	
Alpha	1.00				
Beta	1.00			_	
Lambda	0.74				
Contact Area Elliptical SemiAxes (c)	0.05	mm			
Contact Area Elliptical SemiAxes (d)	0.05	mm			
Contact Pressure (q)	3.2E+02	N/mm2		- m	
Contact Stress Ratio	0.5		and the second s	1	
Deflection under the balls	0.4	um			
Stiffness	28.6	N/um			
				and the second se	

Images of hand calculations available within the excel sheet!

Design

20 m 000 13 -0.13

Manufacturing Drawing of the Grooves

+0.50 27 -0.50

Manufacturing Drawing of the Top Plate

Full scale drawings in Dropbox folder too!

Manufacturing Drawing of the Slotted Plate

Manufacturing

Laser cutting the Plates – 0.25 in thick acrylic

Taper observed but did not affect the functionality of KC

Chamfering the grooves– Brass – used a 45 deg chamfer tool

Assembly – Acrylic plates superglued

Grooves – potted with epoxy on the plate

Testing – Axial Stiffness

- A load of 1.26 Kg was applied at the center of the top plate of the coupling.
- The dial indicator was zeroed while the coupling was still loaded
- The load was removed and the change in the dial reading was noted.
- The deflection was measured as close as possible to the balls.
- The acrylic top plate deflected substantially causing a change in dial reading.
- I expected no change in reading because the predicted deflection of 0.4 um cannot be measured with conventional instruments.
- However, a single division change in the reading was observed (1 division = 0.0005 in or 12.7 um)
- This could possibly be due to the top plate deflection or slight movement of the grooves farther away from each other.

Testing - Angular Repeatability

$$\frac{2 \times 10^{-3}}{4000} = \frac{0.5}{20}$$

$$\frac{2 \times 10^{-3}}{4000} = \frac{0.5}{20}$$

$$\frac{2 \times 10^{-3}}{4000} = \frac{0.5}{20}$$

$$\frac{2 \times 10^{-3}}{2000} = \frac{0.5}{2000}$$

- The linear repeatability of a KC is estimated to be 2 um [1]
- Assuming a deviation of 2 um one of the ball/groove contacts, the minimum distance required to see a perceptible change (0.5 mm) in the laser spot is 10 m
- I did not observe any deviation of the laser spot 16 m far away even after 10 trials.
- Using simple geometry calculations, this suggests that the angular repeatability of the KC is better than 31.2 micro-radians.

Testing – Linear Repeatability

- To test the linear repeatability of the KC, I mounted the KC on the mill and tried to measure any deviation of the dial after each cycle (of lifting the top plate and putting it back)
- As expected, the linear repeatability of the KC was better than what could be measured.
- The repeatability was at least better than 12.7 um

Peer Review Feedback and Improvements

Sr. No	Peer Feedback/Scope for Improvement	Taken care of?
	Hardware/Test Improvements	
1	Fixing the manufacturing errors in the kinematic coupling and resolving overconstraints	Yes (shown in next slide)
2	Proper Test Setup for Axial Stiffness measurement – ensure plate does not deflect	Yes
3	Proper Repeatability (Angular) test with good laser mount	Yes
	Documentation Improvements	
1	Reduce Significant Digits in design spreadsheets, Follow drawing conventions	Yes

Resolving overconstraints and errors in old KC

Elastically Averaged Coupling

FRDPPARC

Sr. No.	Functional Requirements	Design Parameters	Analysis	References	Risks	Counter Measures
1	Ability to bear reasonable moment loads without failure	Yield Strength of the mounting plate Moment of Inertia of the beam elements Thickness of the beams	Bending stress calculations for the beam elements	Mechanics of Materials Textbook	The elastic beams may fail under excessive moment loads	Limit the amount of allowable moments or design a stop which does not allow the moments to exceed a limit
2	Accuracy	Manufacturing errors Number of elastic contacts needed to average out the errors	Performance Ratio (PR) = Manufacturing error/desired accuracy Number of elastic contacts = sqrt(PR)	A.H. Slocum, T.J. Teo, "Principle of elastic averaging for rapid precision design"	Too few elastic contacts for desired accuracy	Add more contact points
3	Moment Stiffness	V, W, Slot width, beam element properties, material properties, angle of orientation	Young's Modulus of the materials Slot width, Dowel Pin diameter, thickness, width and length of the beam elements	Paper, "Principle of elastic averaging for Rapid Precision Design" Mechanics of Materials Textbook	Too high stiffness which I cannot measure	Deterministic Design of the beam elements to get the stiffness I want
4	Ease of Manufacture	What do I have? Time/Budget Constraints Accessibility of Machines	Resource Assessment Bank Balance Machine Shop Schedules	MW Website, Hobby Shop site	I may not finish the EAC by the deadlineBad	Work fast and use readily available materials
5	Easy to insert and remove	Pull out force Friction coefficient Normal forces on the pin	Force on each beam Pull out force calculation	Prior knowledge on mechanics of materials	The EAC is very difficult to insert and remove. Hard to take repeatability readings	Design the beam elements such that the pull out force is nominal

Concept Generation Selected Elastic Averaged 21st Fob based design Coupling Cons 205 too converticel Concepts (1)Pin in slot method design 2 Lots of Gans on analysis 208 of Desight 1) Can be loser cut/water; easily 2) Analysis) Snap fots nuchadon 4 How two cà Cons Pros I make tu O too convertional Analysis () Simple to glex and dore in analy zed design the paper swillit not break) -Counter bore feature as discussed in class Elastic Fingers E Tros Cons (Interesting) Pros Cool Design Designalyze Space 1) Too Itiju Stiffners Easy + T Man 1 @ Easy Will I be able functione Analyze to measure Dowel Pin such migh stiffurs Cartile er @ Mout ban plate need will tobe stron

Analysis

1

How many contact points needed to get the desired accuracy?

Manufacturing error = 200 um (Average Tolerance of the Mill – Kalpakjian) Desired Accuracy = 100 um Number of contact points needed = $\left[\frac{Manufacturing Error}{Desired Accuracy}\right]^2 = 4$ contact points

2 Check for local yielding of elastic elements

Elastic Averaging Spreadsheet - Check for yielding of the eleastic beam elements					Acrylic		
					Yield Strength of the Material	70	Мра
Pin diameter	3.2	mm			Tensile Modulus	3102	Мра
Slot diameter	3	mm			Flexural Modulus	3100	Мра
Displacement of beam element due to							
Dowel Pin offset	0.1	mm					
Total deflection to be borne by a flexure	0.2	mm					
Length of the flexure	20	mm					
Thickness of the sheet	6.2	mm					
Width of the flexure	1.65	mm					
Moment of Inertia	2.3	mm4					
Stiffness of each flexure	172.8	N/mm					
Force on each beam	34.6	N					
Bending Stress	30.7	N/mm2					
Bending Stress Ratio	0.44						

Analysis

3 Estimating the System Stiffness

% 2.77 Precision Machine Design 2018	
% Akshay Harlalka - 23rd Feb, 2018	
%Reference for Calculations:	
%% EAC Calculations	Key Highlights
% Defining the number of elastic contacts needed	
<pre>% deltaa=input('Enter the desired accuracy of the system in um')</pre>	ores the effect of body stiffness. Assumes body has infinite
% deltam=input('Enter the expected manufacturing error in the parts in Stif	fness
<pre>% perratio=deltam/deltaa;</pre>	
<pre>% n=ceil(sqrt(perratio))%</pre>	es the calculation strategy outlined in the naner titled
thetai=[pi/4 (pi/4+pi/2) (pi/4+pi) ((pi/4)+(3*pi/2))] "Pr	inciple of elastic averaging for rapid precision design" [2]
%Geometry	
V=2.3*10^-3	
W <mark>=</mark> 0.675*10^-3	
r <mark>=</mark> 0.05176 % coupling radius	
%Orientation Matrix	Final System Stiffness Predicted = 3730 Nm
Gl=[cos(thetai(l)) cos(thetai(l)+pi/2) 0 ; sin(thetai(l)) sin(thetai(l)+pi	/2
G2=[cos(thetai(2)) cos(thetai(2)+pi/2) 0 ; sin(thetai(2)) sin(thetai(2)+pi	/2) 0 ; 0 0 1]
G3=[cos(thetai(3)) cos(thetai(3)+pi/2) 0 ; sin(thetai(3)) sin(thetai(3)+pi	/2) 0 ; 0 0 1]
G4=[cos(thetai(4)) cos(thetai(4)+pi/2) 0 ; sin(thetai(4)) sin(thetai(4)+pi	/2) 0 : 0 0 11
%Jacobian	Code is unloaded in the Dronbox folder tool
Jil=[1 0 0 ; 0 1 r ; 0 0 1]	code is aploaded in the bropbox folder too:
Ji2=[1 0 0 ; 0 1 r ; 0 0 1]	

Drawings

2 x Ø 2.26 ¥ 7.60 4-40 UNC ¥ 5.69 ∲ 0.2 A B

5

Holder

Where tolerances are not assume +/- 0.1 mm. Mentioned in full-scale drawing files

Individual drawing files will full details are available in the folder. This is for representational purposes only.

Α в

Laser Mount

10

Manufacturing

Materials and Manufacturing :

- Mounting Plate, Laser Mount, Holder All fabricated by laser cutting Acrylic 6.2 mm thick sheet
- Base Plate Aluminium 10 mm thick plate Took original stock size = 124 * 224 * 10 mm – Drilled 4 holes using 0.12 inch drill, followed by 1/24 " inch reamer (through) and 1/26 inch reamer (upto 1mm depth) to allow the pins to stand straight while pressfitting dowel pins to plate
- **Dowel Pins** Stainless Steel Available off the shelf

Taper due to Laser cutting

Taper Calculation

- Laser cutting process introduces taper through the thickness of the part being cut
- Experimentation with various laser power/speed settings was done to minimize the taper. However, taper could still not be eliminated.
- The width of the slots on the top and the bottom plate were both measured and the taper angle calculation was done. A 0.2 mm difference was found between the widths. Thickness of sheet was 6 mm
- This meant that the taper angle was 1.7 degrees !

Effect of Taper and refined performance expectations from the coupling

 Based on the introduction of taper, I expected the stiffness of my coupling to be lower than predicted. Also, I expected that taper will help accelerate the process of wear and cause the coupling to be less repeatable.

Testing - Accuracy

- In last week's report, the mounting plate was laser-cut while the bottom plate was machined. I wasn't able to measure the accuracy of the EAC last week as the manufacturing errors were different in both processes.
- This week, I machined two adjacent edges of the top and bottom plate separately, on the same machine and after assembling the coupling, measured the deflection of the X and Y edges using a dial indicator.
- While I tried my best to machine the sides of the acrylic plate and aluminium as with the same accuracy, it seemed there was an offset each time. It could be due to the fact that Acrylic is much less stiffer than aluminium and the cutting forces at 1500 rpm were deflecting it substantially.
- The results are shown in the next slide.

Testing - Accuracy

		X Axis				Y Axis			
Sr. No	Distance (mm)	Dial Reading of Bottom Plate	Dial Reading on Top Plate	Difference	Difference Conter subtracting offset	Dial Reading of Bottom Plate	Dial Reading on Top Plate	Difference	Difference after subtracting offset
1	0	22	12	10	10	0	22	22	11
2	10	19	10	9	9	0	19	19	8
3	20	19	12	7	7	0	17	17	6
4	30	18	10	8	8	0	16	16	5
5	40	15	9	6	6	0	15	15	4
6	50	12	8	4	4	0	13	13	2
7	60	10	5	5	5	0	13	13	2
8	70	7	4	3	3	0	12	12	1
9	80	5	2	3	3	-1	9	11	0
10	90	3	2	1	1	-2	9	11	0
11	100	1	1	0	0	-2	9	11	0
12	110	0	0	0	0	-2	9	11	0

Testing - Accuracy

		X Axis	Y Axis
Sr. No	Distance (mm)	Deviation (um)	Deviation (um)
1	0	127	140
2	10	114	102
3	20	89	76
4	30	102	64
5	40	76	51
6	50	51	25
7	60	64	25
8	70	38	13
9	80	38	0
10	90	13	0
11	100	0	0
12	110	0	0

The maximum deviation observed in the coupling assembly was **140 um** which was better than the accuracy of the mill used to machine its components!

This shows us the power of elastic averaging!

Expected accuracy was around 100 um

Angular deviation was **1.2 milliradians**

Testing – Moment Stiffness about Z axis

Important Note: I did not have access to a digital torque wrench. So, I applied a single force to cause a moment instead of a force pair. This **will cause translational motion of the plate** as well. However, the translational motion of the plate will not get amplified whereas the angular deviation will. Therefore, if the distance from the laser is very large, the deviation of the laser due to translational motion **can be neglected** in comparison to the angular deviation .

Testing Results - Stiffness

Sr. No	Weight (in Kg)	Deflection on paper (mm)	Distance (m)	Theta (milli- radians)	Force (N)	Arm length (mm)	Moment (Nm)	Stiffness (Nm)
1	2.5	5.74	8	0.72	25	62	1.5	2152
2	3.5	10.72	14	0.77	34.3	62	2.1	2777
3	4.1	10.10	14	0.72	40.9	62	2.5	3512
6	4.5	8.80	8	1.1	44	62	2.7	2454
4	4.8	14.86	14	1.06	47	62	2.9	2748
5	4.8	10.99	8	1.38	47	62	2.9	2109

Values reported last week

Recent Values

Probable reasons for difference in the theoretical and experimental Stiffness Values:

- 1. Theoretical Stiffness does not take the body stiffness into consideration. Therefore, actual stiffness will be slightly lower than predicted.
- 2. Taper due to the laser-cutting process will reduce stiffness.
- 3. Coupling getting less stiff over time. Multiple repeatability tests were conducted during this time. Possibility that wear of the acrylic beams is causing the reduction in stiffness.

Testing – Angular Repeatability

- To determine the angular repeatability, the base plate was clamped using 3 spring clamps. Unfortunately, I did not leave enough space for clamps on the other side, so had to clamp it from one side only.
- The target was 16 m away. 10 repeatability measurements were taken. The repeatability graph is shown above
- This time, laser was mounted firmly. So, that uncertainty was eliminated this week.

Testing – Linear Repeatability

- The repeatability test for EAC showed weird results.
- The repeatability seemed to be worsening over time
- One possible explanation could be the wear of acrylic beams by dowel pins.
- Evidence of wear could be observed in the microscopic image

40 X Microscopic Image of dowel pin/elastic beam contact

Peer Review Feedback and Improvements

Sr. No	Peer Feedback/Scope for Improvement	Taken Care of?
	Hardware/Test Improvements	
1	Angular repeatability test for EAC need to be redone – as laser was not fixtured properly.	Yes
2	EAC's are mainly to improve accuracy – therefore important to measure accuracy to close the design loop	Yes
3	Moment Stiffness	Yes
	Documentation Improvements	
1	Elastic Averaging formula used was wrong – typo on the paper	Yes
2	Reduce Significant Digits in design spreadsheets, Follow drawing conventions	Yes

References

[1] Martin L. Culpepper, Carlos Araque and Marcos Rodriguez, "Design Of Accurate And Repeatable Kinematic Couplings", Web Article <u>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.510.4074&rep=rep1&type=pdf</u> (Accessed on 2nd March, 2018)