Week 6 and 7

Linear Motion Slide

Akshay Harlalka

Background and Insights

- This week, we were supposed to build the error budget for our Linear slide. Also, we were supposed to complete the detailed mechanical design with part drawings, BOM etc.
- The first step towards building an error budget starts with the error apportionment estimator for each axis. This gives a range within which the axis errors should lie in order to meet the customer's requirements.
- The accuracy, I have targeted to strive for is 150 um and I had a total budget of 96 um to work with for geometric and load induced errors.
- After completing the above step, I modelled the geometric and load induced errors and translated them to the tool tip using HTMs.
- I learnt that the overall accuracy of my system is governed largely by the geometric errors and the load induced errors were very small in comparison.
- I planned to apportion the errors more wisely giving more weight to geometric errors.

Initial Axis Error Apportionment Sheet

Axis_error_apportionment_estimator.xls								
To apportion errors between types and axes. By Alex Slocum, last modified AHS 2014.04.09								
Enter numbers in BOLD, Results in RED								
Number of axes, N	2							
Total allowable error, dtot (micror	150	what the cus	tomer wants fro	m their mach	ine			
				Apportion of	error within ea	ch axis (amou	int allocated	to each of
				X, Y, Z dir	ections) to be	determined by	y sensitive d	irections
				Bearings (fb)	Structure (fs)	Actuator (fa)	Sensor (fs)	Cables (fc)
		Apportion						
		of error	Apportion of					
Source of error	Factor (f)	(dtot/f)	error per axis	1	0.5	0.2	0.1	0.1
		Base	ed on linear sur	n of errors				
Geometric, fg	1.00	53	26	14	7	3	1	1
Thermal, ft	0.35	18	9	5	2	1	0	0
Load-induced (deflection), fl	1.00	53	26	14	7	3	1	1
Process, fp	0.50	26	13	7	3	1	1	1
		Based	on root square :	sum of errors				
Geometric, fg	1.00	97	69	60	30	12	6	6
Thermal, ft	0.35	34	24	21	11	4	2	2
Load-induced (deflection), fl	1.00	97	69	60	30	12	6	6
Process, fp	0.50	49	34	30	15	6	3	3
	Average (expected case) of linear and RSS							
Geometric, fg	1.00	75	48	37	19	7	4	4
Thermal, ft	0.35	26	17	13	6	3	1	1
Load-induced (deflection), fl	1.00	75	48	37	19	7	4	4
Process, fp	0.50	38	24	19	9	4	2	2

Geometric Error Model

0.5 mm parallelism error was observed on the top surface

Load Induced Error Model

Cutting Force Estimation

Material to cut: Balsa Wood

Ultimate Shear Strength = 5 MPa (Along Fiber Direction)

Cutting Force ≈ Ultimate Shear Strength * Chip Cross-section area = 5* 4mm^2 = 20 N (Assuming 4 mm^2 chip cross-section area

Thrust Force = 0.84*Cutting Force (For a standard geometry of tool available in the machine shop) = 0.84*20 = **16.8** N Note: The ratio of thrust force to cutting force is a function of tool angles

Calculation of Moments about the Center of stiffness due to the cutting forces

Detailed calculations are available in the <u>spreadsheet</u>

Pitch Moment will be caused due to two factors:

- a. Force exerted by the leadscrew on the carriage if the leadscrew is not at the COS
- b. The thrust force from cutting at the tool tip

If top and bottom pads have different stiffness's, the moment stiffness equation will be

Pitch Stiffness = $2b^2(k1 + k2)$

Calculation of Moments about the Center of stiffness due to the cutting forces

Yaw

Detailed calculations are available in the <u>spreadsheet</u>

Yaw Moment will be caused due to two factors:

- a. Force exerted by the leadscrew on the carriage if the leadscrew is at a horizontal offset from COS
- b. The thrust force from cutting at the tool tip

Yaw Moment will be caused due to :

a. The cutting force in the downward direction if the tool point is not at the COS

Load Induced Errors

Angular errors induced due to the loads

Туре	Moment (Nm)	Angular Error (urad)
Pitch	0.3	1.67
Yaw	1.18	190
Roll	1.4	19

Errors translated to the tool tip

Туре	Error (in um)
δx	0.77 (Sensitive)
δγ	-1.36
δz	13.4 (Sensitive)

Geometric Errors

Angular errors due to geometric irregularities

Туре	Angular Error (urad)
Pitch	1880
Yaw	440
Roll	2170

Errors translated to the tool tip

Туре	Error (in um)
δx	-87 (Sensitive)
δγ	152
δz	44.4 (Sensitive)

Completed Solid Model of the LMS

- Bolt spacing was close to 4X bolt dia to ensure that the strain cones overlap and so that the keeper plate can be modelled as a cantilever beam.
- The slot on the top of the carriage is for the leadscrew to be installed.
- Components for the leadscrew mounting have arrived and will be installed soon.
- The pads opposite to those with wave spring were preloaded with a set screw.

Key Features of the Design

- To accommodate for the rail parallelism errors, wave springs were installed on the left side. Wave springs were preferred over Belleville disc springs because the former was able to accommodate a 0.5 mm error without flattening out.
- Similarly, keeper plates were used to accommodate the errors in the rail.
- Care was taken to ensure that the preload force in both the cases was more than the expected forces to be encountered during cutting operation.

Mounting of Wave Springs on the side

LEFT SIDE DETAILS

RIGHT SIDE DETAILS

UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS

ONE PLACE DECIMAL: +/- 0.1 mm

TOLERANCES:

TWO PL	ACE DECIMAL: #/-0	0.06 mm					2.//1	PRECISION PR	ODUCT DE	SIGN
DRAWN	NAME AKSHAY H	SGNATURE ADH	DATE 3/28/18				TITLE:	CAPPIAG		
CHKD APPVD							-	CANNAC	- SIDL	
Q.A				AFRK	E CAN MAHO	GANY	DWG NO.	LM-CAR-3		A4
				WOO WBGHT:	D		SCALE1:1		SHEET 3 OF 3	

	6	5		4			3		2	2		1	
D		^		ITEM NO.	F	PART N	UMBER	PAR	I NO/VEND	OR DRAW	/ING	QTY.	ם C
		$\langle \circ \rangle$		1	CAR	RIAGE			LM-C	CA		1	
				2	BEAR	RING P	AD LEFT		LM-B	PL		2	
			\rightarrow	3	BEAR NEW	RING P/	AD RIGHT	r	LM-B	PR		2	
		$\langle \circ \rangle$		4	BEAR	RING P/	AD TOP		LM-	ΓP		6	
	U l 🔈	• • •		5	SHO	ULDER	SCREW	1	91259/	A174		2	
С	2	>	% 0	6	BRAS INSE	SS TAP RT	PING		90016/	4005		11	
	\square			7	KEEP	er pla	TES		LM-	<p< td=""><td></td><td>4</td><td></td></p<>		4	
	7	-		8	4-40 ASSE	WASHE MBLY	ER SCREW	V	N//	٩		8	
				9	KNU SET S	RL CU SCREW	P POINT /		90289/	A106		2	
В			4										B
	(9)			ESS OTHERWISE SPECIFIED: ENSIONS ARE IN MILLIMETER	RS RNSH:			DESURE AN BREAK SHA		IOT SCALE DRAWING		REVISION 0	
	ें प		3	IRANCES:				EDGES	2.77 PR	ECISION F	RODU	CT DESI	GN
	8)		NAME 3 WN AKSHAY H CD VD	ADH	DATE 3/28/18			""LM	-CA-A	\ SSE	MBL	Y
A			0				MATERIAL:		DWG NO.	M-CA-ASS	EMBLY	,	A4 A
_		5		1			WEGHT: Q		SCALE12)	SHEET 1 C	1	
SOL	DWORKSE dycational F	Product. For Instructiona	l Use Only.	4			0						

Manufacturing

Carriage Manufacturing

Rail

Final Manufactured Slide

Manufacturing

Backside of the carriage

Both Modules Manufactured

Pitch Accuracy

Test Setup

Measurement Table

Pitch Accuracy							
Distance of the lase	r pointer from paper	9 m					
Distance from edge of the rail	Z Deviation from Neutral Position (on paper)	Angular deviation about Z					
0 mm	0	0.00					
20 mm	-4	-0.44					
40 mm	-6	-0.67					
60 mm	-6	-0.67					
80 mm	-8.5	-0.94					
100 mm	-6.5	-0.72					
120 mm	-9	-1.00					
140 mm	-6	-0.67					

Pitch Accuracy				
Predicted	Tested			
1.88 mrad	1 mrad			

- The expected geometric pitch accuracy was dependent on the flatness of the bearing rail
- Measured the flatness of the rail and predicted the accuracy based on this number
- 0.5 mm flatness error in rail observed which means max error of 1.88 mrad
- Actual accuracy is better than expected.
- Prediction of Pitch Accuracy is shown as follows:

Yaw Accuracy

	Target
	Laser
Carriage	
Rail	

Test Setup

Measurement Table

Yaw Accuracy						
Distance of the laser	pointer from paper	9 m				
Distance from edge of the rail (in mm)	Y Deviation on paper (in mm)	Angular deviation about Y (mrad)				
0	0	0.00				
20	-2	-0.22				
40	0	0.00				
60	0	0.00				
80	0	0.00				
100	1.5	0.17				
120	2	0.22				
140	0	0.00				

Yaw Accuracy				
Predicted	Tested			
0.94 mrad	0.44 mrad			

- The expected geometric yaw accuracy was dependent on the side flatness of the bearing rail
- Measured the flatness of the rail and predicted the accuracy based on this number
- 0.25 mm flatness error in rail observed which means max error of 0.94 mrad
- Actual accuracy is better than expected.
- Prediction of Yaw Accuracy is shown as follows:

Roll Accuracy

Test Setup

Measurement

A max deviation of 25.5 mm was observed Over a distance of 14 m from the laser pointer.

This translated to a roll accuracy of 1.82 mrad

50 um vertical rail error 23 mm

observed

θ

Yaw Accuracy					
Predicted Tested					
2.17 mrad	1.82 mrad				

- The expected geometric roll accuracy was dependent on the side flatness of the bearing rail
- Measured the flatness of the rail • and predicted the accuracy based on this number
- 0.05 mm flatness error in rail observed which means max error of 2.19 mrad
- Actual accuracy is better than expected.
- Prediction of Roll Accuracy is shown as follows:

Pitch Stiffness

Stiffness Testing

Digital Spring Scale	Digita	al Spring	g Scale
----------------------	--------	-----------	---------

Pitch Stiffness					
Predicted from Spreadsheet	Tested				
1359 Nm/rad	1365 Nm/rad				

This stiffness is one after losing the preload contact as the applied force is greater than the force with which the keeper plate was preloaded.

At forces less than the preload force, no discernible movement of the laser could be observed.

Distance from the laser = 9 m

Moment Arm = 54 mm

Sr.No	Load	Moment Applied	Deflection on paper	Angle	Stiffness (Nm/rad)
1	49 N (5kg)	2646 Nmm	15.5 mm	1.7 mrad	1538
2	69 N (7 kg)	3726 Nmm	26 mm	2.9 mrad	1294
3	82 N (8.4 Kg)	4428 Nmm	31.5 mm	3.5 mrad	1265

Average Pitch Stiffness = 1365 Nm/rad

Roll Stiffness

Sr.No	Load (N)	Moment Applied (N mm)	Deflection on paper (mm)	Angle (mrad)	Stiffness (Nm/rad)
1	47	2587	36.5	2.6	992
2	71	3881	59	4.2	921
3	86	4743	86	6.1	772
4	81	4474	77	5.5	813
5	99	5444	101	7.2	755
				Average	= 850.6 Nm/rad

Roll Stiffness				
Predicted from Spreadsheet	Tested			
1359 Nm/rad	850.6 Nm/rad			

This stiffness is one after losing the preload contact as the applied force is greater than the force with which the keeper plate was preloaded.

At forces less than the preload force, no discernible movement of the laser could be observed.

Distance from the laser = 14 m

Moment Arm = 55 mm

Yaw Stiffness

Roll Stiffness					
Predicted from Spreadsheet	Tested				
6188 Nm/rad	5372 Nm/rad				

Distance from the laser = 9 m Moment Arm = 35 mm

Sr. No	Load (N)	Moment Applied (N mm)	Deflection on paper (mm)	Angle (mrad)	Stiffness (Nm/rad)
1	26 N	910		0.16	5687
2	61 N	2135		0.386	5531
3	84	2940		0.6	4900

Average = 5372 Nm/rad

Angular Repeatability Test – Pitch, Yaw and Roll

One reference point was chosen and the slide was moved back and forth to the same point. Deviation of the laser pointer was measured

Sr. No	Horizontal Deviation (mm)	Yaw Error (mrad)	Vertical Deviation (mm)	Pitch Error (mrad)	Sr. No	Roll Deviation (mm)	Roll Error (mrad)
Ref	0	0.00	0	0.00	Ref	0	0.00
1	1.5	0.17	1	0.11	1	2	0.14
2	1.5	0.17	1	0.11	2	3	0.21
3	0	0.00	1	0.11	3	3	0.21
4	3	0.33	1	0.11	4	4	0.29
5	3	0.33	1	0.11	5	6	0.43
6	3	0.33	1	0.11	6	10	0.71
7	3	0.33	1	0.11	7	9	0.64
8	3	0.33	1	0.11	8	11	0.79
9	3	0.33	1	0.11	9	11	0.79

Accuracy/Repeatability Ratio

Yaw Repeatability = 0.33 mrad Yaw Accuracy = 0.44 mrad 1.33 Pitch Accuracy = 1 mrad Pitch Repeatability = 0.11 mrad

Roll Repeatability = 0.79 mrad Roll Accuracy =1.82 mrad 2.3

Linear Accuracy Test

Distance from edge of the rail (mm)	Up Down Accuracy		Right Left	Accuracy
	Divisions on the dial	Deviation (in mm)	Divisions on the dial	Deviation (in mm)
20	6	0.08	2	0.03
40	10	0.13	3	0.04
60	16	0.20	4	0.05
80	21	0.27	6	0.08
100	25	0.32	6	0.08
120	31	0.39	8	0.10
140	41	0.52	9	0.11

The linear accuracy is primarily a function of the bearing rail errors. Therefore, these values conform well with what the Bearing rail errors were measured to be. The up down accuracy of 0.52 mm matches closely with the rail parallelism error of 0.5 mm. In the left and right, the parallelism error on each side was 0.125 mm which is also close to measured value of right left accuracy.