Week 10

Work Completed this Week

- Final CAD of the Rotary Motion System
- Drawings and BOM
- Analysis of the RM Check the Analysis Spreadsheet
- Seek and Geek 10
- Error Budget Analysis (Still in progress)

Link to RM Analysis Sheet

RM An	alysis Spreash	neet					
<u>Stiffnes</u>	s Calculations a						
Bearing Stiff	fness						
					Units		
Bearing use	d	608 RS					
Туре				Deep Groove			
Ball diameter				4	mm		
Dynamic Load Capacity				3390	N		
Bearing Stiffness				84750	N/mm		
Housing Stif	fness - modelled as Canti	ilever					
					Units		
Material of the Housing				Aluminium			
Elastic Modulus				69	Мра		
Thickness				13	mm		
Width				50	mm		
Height				20	mm		
<	Stiffness Calculations	Leadscrew Calculations	Handwheel Selection	(+)		: •	

Final CAD for the Rotary Motion Module

Final Assembly of LM+RM

Rotary Motion Module – Design Details

Handwheel Assembly – 2 nuts tightened against a locknut to prevent the movement of the locknut from both sides. Loctite will be used to prevent rotation of the nuts on handwheel side. A set screw will be used to transmit the torque.

 \bigcirc

Bearing Housing Assembly – Two deep groove ball bearings are used to either side. A separate part with assembly features will be joined to the rail using wood glue. The bearing housing will be located using assembly features also to ensure accurate positioning of the housing with respect to the rail.

Preloading the Bearings – An axial preload is applied to the inner race of the bearings using locknut. The axial stiffness of one deep grove ball bearing was 84,750 N/mm. The force borne by leadscrew is 30.8 N. This translates to a deflection of just 0.36 um which will be well within the budget. Therefore, one deep groove bearing on either side provided sufficient axial stiffness in this case.

BOM for Lead Screw Assembly

BILL OF MATERIALS

Manufacturing Drawing for Leadscrew

Manufacturing Drawing for Housing Holder

Manufacturing Progress

Leadscrew Machined

Assembled the Leadscrew on the Sketch Model

Plan for next week

- Complete Error Budget Analysis
- Manufacture Housing Holder
- Assembly and Test